新人教版高中二年级数学必学3第一章要素是学习的重点内容,也是考试的重点内容,同学们要警觉起来,各科成绩的提升是同学们提升总体学习成绩的要紧渠道~以下是智学网为同学们收拾的,供参考。
1.辗转相除法是用于求公约数的一种办法,这种算法由欧几里得在公元前年左右第一提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这个时候的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的办法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的办法.
5.常见的排序办法是直接插入排序和冒泡排序.
6.进位制是大家为了计数和运算便捷而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的办法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再根据十进制数的运算规则计算出结果.
8.将十进制数化为进制数的办法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
★重难题突破★
1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据根据肯定的规则进行排序;理解进位制,能进行各种进位制之间的转化.
2.难题:秦九韶算法求一元多项式的值及各种进位制之间的转化.
3.重难题:理解辗转相除法与更相减损术、秦九韶算法原理、排序办法、进位制之间的转化办法.
1、在对16和12求公约数时,整个操作如下:→→→,由此可以看出12和16的公约数是
A、4B、12C、16D、8
2、下列各组关于公约数的说法中不正确的是
A、16和12的公约数是4B、78和36的公约数是6
C、85和357的公约数是34D、105和315的公约数是105